
9.2. WIDGETS WITH VALUES 247

9.2 Widgets with Values

A variety of tk widgets allow the user to enter values that are accessible to the
program. In this section we focus on two of these: scales, which have sliders
that allow the user to choose a value out of a range of values, and entry boxes,
that allow the use to type a value. These two classes of widgets will handle
most of the data entry situations you are likely to encounter.

Both of these widgets make data available to the program via control vari-
ables. We used a control variable in section 8.1 when we wanted to make the
text of a label change according to input from our program. The control vari-
able mechanism provides a uniform way the system can pass data between your
program and its user interface. There are three classes of control variables:

• IntVar(), which holds an integer value

• DoubleVar(), which holds a floating point value (double is an old C term
for a certain kind of float point value)

• StringVar(), which holds a string.

The datum held by these objects is stored in a variable called value. There are
two methods for objects of each class: get() returns the value stored in the
object, while set(v) stores v as the value of the object.

For example, we we want to make an integer control variable and give it the
value 8, we would use the code

numVert i ce s = In tVa r ()
numVer t i ce s . set (8)

If at some future point we wanted to retrieve the value stored in numVertices,
we would say

n = numVert i ce s . ge t ()

The Scale class is used to make widgets that allow the user to select one value
out of a range. The constructor for this class has many defaulted parameters;
here is a typical call, with the only parameters we usually need to give values
to

Sca l e (parent , \
f rom = <low end o f range> ,\
to = <h igh end o f range>, \
o r i e n t = <HORIZONTAL or VERTICAL>, \
v a r i a b l e = <c o n t r o l v a r i a b l e>)

As with all of the widgets, the first argument is the parent window in which
the widget lives. We save the value returned by this constructor, since we need
it for the grid () method; the widget is not visible until we place it in its grid
location.

For example,

248

numVert i ce s = In tVa r ()
vSca l e = Sca l e (MenuBar , f rom =1, to=100 , \

o r i e n t=HORIZONTAL, v a r i a b l e= numVert i ce s)
vSca l e . g r i d (row=0, column=2)

You may attach a callback function to a scale, but if you do it will be continu-
ously called as the user drags the scales slider. This may be what you want, but
in many situations you want to wait until the user has finished with the scale
before taking action. If this is your choice, use the code above for the Scale
widget and provide a button next to the scale for the user to click after the
scale is adjusted. The buttons callback can refer to the scales control variable
to see the value the scale is set to.

If you do wish to use a callback function, you should assign it to the command
parameter in the Scale constructor. For example,

numVert i ce s = In tVa r ()
vSca l e = Sca l e (MenuBar , f rom =1, to=100 , \

o r i e n t=HORIZONTAL, v a r i a b l e= numVert ices , \
command=Draw)

The callback function for a scale must take one argument, which will be the
scales current value. For technical reasons this argument is given a string value;
if you want it to be an integer you must convert it.

For example, the following might be the start of the code for the Draw
function in the Scale constructor above:

def Draw(s t r i n g n) :
n = str (s t r i n g n)
< code to draw a po lygon wi th n v e r t i c e s >

Again, a callback function is called continuously as the user drags the Scale
widget. If the widget is currently set to 6 and the user drags it to 10, this
function will be called for values 7, 8, 9, and 10. In a larger range the function
will be called continuously, but the system might not be fast enough to keep up
with the users dragging. You are guaranteed, however, that it will be called for
the value the dragging stops at.

An Entry widget serves a similar purpose, but for the entry of strings. This
gives the user a text box into which to type. One difference between the Entry
widget and other widgets is that nothing signals when the user is finished typing.
We will later see a way to use the <Return>-key as a signal, but for now we will
just use a button. The user can enter a string into the Entry box, and click the
button as a signal that the entry is ready.

Because there is no callback function, the code to create an Entry box is
particularly simple:

Entry (parent , v a r i a b l e = <c o n t r o l v a r i a b l e>)

As with all of the widgets, the first argument to this constructor is the window
in which it will be placed. The only other argument is the control variable that
will hold the text the user enters into the box. This must be of type StringVar.

9.2. WIDGETS WITH VALUES 249

Here is code to create an entry box and a button, followed by code for the
buttons callback:

global numberOfVer t i c e s
numberOfVer t i c e s = S t r i n gVa r ()
t = Ent ry (MenuBar , t e x t v a r = numberOfVer t i c e s)
t . g r i d (row=0, column=1)

DrawButton = Button (MenuBar , t e x t = ”Draw” , \
command = s e l f . Draw)

DrawButton . g r i d (row=0, column = 2)

def Draw(s e l f)
n = int (numberOfVer t i c e s . ge t ())
<code to draw a po lygon wi th n v e r t i c e s >

The following program illustrates these ideas. This is a complete program
for drawing a number of circles given by the user. The user has two choices for
input: either a Scale widget or an Entry box. Each is accompanied by a button
whose callback function handles the actual drawing. Dont worry about the code
for drawing circles; we will discuss that in section 8.3.

250

from t k i n t e r import ∗
from random import ∗

class GUI (Frame) :
def i n i t (s e l f) :

Frame . i n i t (s e l f , None)
s e l f . g r i d ()

MenuBar = Frame (s e l f)
MenuBar . g r i d (row = 0 , column = 0 , s t i c k y=W)

QuitButton=Button (MenuBar , t e x t=”Quit ” , command=s e l f . q u i t)
QuitButton . g r i d (row = 0 , column = 0)

s e l f . numC i r c l e s = In tVa r ()
s = Sca l e (MenuBar , f rom = 1 , to=50, \

o r i e n t=HORIZONTAL, v a r i a b l e = s e l f . numC i r c l e s)
s . g r i d (row=0, column = 1)
l a b = Labe l (MenuBar , t e x t=”Number o f C i r c l e s ”)
l a b . g r i d (row=1, column=1)

sButton = Button (MenuBar , t e x t=”Draw” , \
command = s e l f . D rawC i r c l e s)

sButton . g r i d (row = 0 , column = 2)

s e l f . numCi r c l e s2 = St r i n gVa r ()
e = Ent ry (MenuBar , t e x t v a r = s e l f . numCi r c l e s2)
e . g r i d (row = 0 , column = 3)
l ab2 = Labe l (MenuBar , t e x t = ”Number o f C i r c l e s ”)
l ab2 . g r i d (row = 1 , column = 3)

sButton2 = Button (MenuBar , t e x t = ”Draw” , \
command = s e l f . D rawC i r c l e s 2)

sButton2 . g r i d (row = 0 , column = 4)

global canvas
canvas = Canvas (s e l f , w idth=500 , h e i g h t =500 , \

background=”wh i t e ”)
canvas . g r i d (row=1, column=0)

Program 9.2.1: Circle Drawer, first part

9.2. WIDGETS WITH VALUES 251

def DrawC i r c l e s (s e l f) :
canvas . d e l e t e (” a l l ”)
n = s e l f . numC i r c l e s . ge t ()
for x in range (0 , n) :

RandomCirc le ()

def DrawC i r c l e s 2 (s e l f) :
canvas . d e l e t e (” a l l ”)
n = int (s e l f . numCi r c l e s2 . ge t ())
for x in range (0 , n) :

RandomCirc le ()

class C i r c l e :
def i n i t (s e l f , x , y , r a d i u s , c o l o r) :

s e l f . my shape = canvas . c r e a t e o v a l (x−r a d i u s , y−r a d i u s ,
x+rad i u s , y+rad i u s , f i l l = c o l o r)

def RandomCirc le () :
x = r a n d i n t (1 , 500)
y = r a n d i n t (1 , 500)
r a d i u s = r a n d i n t (5 , 50)
c o l o r s = [” red ” , ” g reen ” , ” b l u e ” , ” y e l l ow ” , ” pu r p l e ”]
c o l o r = c o l o r s [r a n d i n t (0 , 4)]
C i r c l e (x , y , r a d i u s , c o l o r)

def main () :
window = GUI ()
window . main loop ()

main ()

Program 9.2.1: Circle Drawer, conclusion

